Skip to main content

Posts

Showing posts from April, 2020

The relation between modulation and waveform in communication systems

In recent research efforts related to 5G and beyond radio access technologies, there has been  many contributions in the development of new innovative methods and schemes related to the following two research directions at the physical layer level. 1) Advanced waveform designs: The purpose here is to create new improved waveforms (other than the conventional OFDM waveform) to enhance the system performance metrics in terms of PAPR, OOBE, ACI, INI, synchronicity, complexity,  spectral efficiency, reliability, and robusetness to ICI, Doppler, and phase noise, etc. Examples of waveforms in this domain include GFDM, FBMC, DFT-s-OFDM, ZT-DFT-s-OFDM, W-OFDM, F-OFDM, edge filtered OFDM, OTFS, OCDM, etc.  2) New modulation techniques: The goal here is to come up with novel modulation schemes (other than the conventional M-ary QAM/PSK modulation schemes) to improve the system performance metrics in terms...

The key motivations behind physical layer wireless security research

The key motivations behind physical layer security research , the role of physical layer security in future communication standards, and the relationship between physical layer security and upper layer security are summarized in the following points: - In all developed wireless communication systems and standards such as 2G, 3G, 4G, 5G, WiFi, WiMax, WiGig, etc., the main objectives of the physical layer transmission techniques and schemes have  mainly  been focused on achieving two key design requirements: 1) increasing data rates (higher capacity and spectral efficiency), and 2) enhancing reliability (lower error rates) along with reducing latency. These two key design requirements have been the primary driving factors for research and development in wireless communications up until recently. In fact, these requirements related to spectral efficiency and reliability are usually attained and met by using novel physical layer transmission techniques; while leaving secur...